

Lethality, Survivability, Mobility and Sustainment for America's Army

Truck Transformation Enabling Army Transformation 2002 Tactical Wheeled Vehicles Conference January 29, 2002

MG N. Ross Thompson III Commanding General

Tank-automotive & Armaments COMmand

Outline

- TACOM
- Advanced Collaborative Environment
- Requirements
- Fuel Efficiency
- National Automotive Center
- Hybrid Electric Vehicles
- Fuel Cells
- Battlefield Fuel Users
- HE Assessment (BCT Example)
- Conclusion

Tank-automotive and Armaments Command Organizational Structure

A Team of Valued and Empowered Professionals

Supporting Army Readiness

SUPPORT

Capital Value of TACOM Equipment \$81.7B

2993 Fielded End Item NSNs Supported

> 27,000 Component NSNs

PRODUCT LINES

- Combat Vehicles
- Trailers
- Materiel Handling Equipment
- Fuel & Water Dist Equipment
- Chemical Defense Equipment
- Howitzers
- Mortars
- Machine Guns
- Aircraft Armaments
- Rail
- Petroleum & Lube Equipment

- Tactical Vehicles
- Construction Equipment
- Tactical Bridges
- Sets, Kits & Outfits
- Shop Equipment
- Large Caliber Guns
- Rifles
- Ammunition
- Demolitions & Explosives
- Watercraft
- Non-Tactical Vehicles

MAGNITUDE

72% of Army's
Reportable Density is
TACOM Supported

81 Allied
Countries own TACOM
Equipment

97% of All Army
Parent UICs Contain
TACOM Supported
Equip

Plus Technology Development for the Objective Force

The Synergy of the TACOM / (PEO)⁴ Community Skills, Interactions & Resources - Leading Us Forward

Technology:

Leading-edge research and development

Integrated Industrial **Center:** Projecting & Sustaining Combat Power

The Army Transformation

Sustain & Recapitalize Objective **R&D** and Procurement Tech

Legacy

Force

Interim Force

Logistics: Maximizing weapon system capability with responsive support

concepts

Acquisition: Streamlining the Contracting Process

Public-Private

Partnering: Sharing World-class Technology

Responsive, Deployable, Agile, Versatile, Lethal, Survivable, Sustainable.

Program

Management: Putting warfighting capability into the hands of the warfighter

Managing Across the Life Cycle with Our Industry Partners

Strategic Objectives

- Make customer support and satisfaction our top priority.
- Revitalize the workforce to meet 21st century challenges.
- Deliver world class technology on time to support FCS Block 1.
- Ensure seamless integration/synchronization between TACOM and its PEO partners.
- Create an Integrated Industrial Center and become the provider of choice.
- Reengineer the spare parts system.
- Make the financial system support the business, not the other way around.
- Create the model Integrated Business Environment / Integrated Data Environment.
- Partner to provide best value and capability.
- Continue to be the Army's lead system integrator for ground systems.

•

Army Transformation It's About Changing the Way We Fight

- Financial Reforms are key to future success!
- Centralization and Restructuring Initiatives
- Integrated Industrial Center
- Cost Management/Activity Based Costing
- Army Working Capital Fund (AWCF)
- Acquisition Excellence
- ARDEC/TARDEC Reengineering and Collaboration
- TACOM Quality Federation
- TACOM Personnel Demo
- Advanced Collaborative Environment (ACE)

Doctrine
Training
Leaders
Organizations
Materiel
Soldiers

Installations
Business Processes

Synaptic Environment

Systems Integration

High Tech Collaboration Tools

In the Office

In the Lab

World Wide Web

On the Road

On the **Shelf**

In the Virtual World

Virtual IAV System Prototypes & Collaborative Evaluations

From the Desktop...

IDE

PMO BCT, TRADOC, STRICOM, ARL, ATEC, Prime & Subcontractors, Safety, etc.

10 BCT Variants Available

ICV, MGS, ATGM, MC, CV, RV, FSV, ESV (Prior to Hardware)

.to the Virtual World

Evaluation Process for FCS Concepts

Integrated Industrial Center

Vision: Create a 21st Century Industrial Center That Optimizes Ground System Readiness and Enables Transformation

Leverage all TACOM / (PEO)⁴ Community Assets

(PEOs/RDECS/Acquisition/Corporate Mgmt/Commodity Business, Legal)

Goal is to Become the "Provider of Choice"

Requirements for Army's Future

- C130 Transportable
- Decrease logistics requirement by 33-50%
- Decrease fuel consumption by 50%
- Deployable in 96 hours
- Operate for 5 days without resupply
- Capable of 100 kph top speed & 60 kph cross-country
- Survive 1st round engagements
- Affordable
- Use commonality
- Joint & combined interoperable
- Embedded training and human factors

Improving Fuel Efficiency is Key

Why Should the Military Target Fuel Efficiency?

- **Surprise:** Fuel efficiency increases platform stealth by diminishing the platform's heat signatures, exhaust, and/or wakes; and affords less chance of compromising movement by reducing the logistics tail and resupply communications.
- **Mass**: Fuel efficiency decreases the time required to assemble an overwhelming force.
- **Efficiency:** Fuel efficiency increases commander's flexibility in efficiently assembling an overwhelming force.
- Maneuver: Platforms will travel faster and farther with reduced weight and smaller logistics tails that improve platform agility, loiter and flexibility.
- **Security:** Fuel efficiency decreases platform vulnerability to attacks on supply lines, and reduces demand for strategic reserves.
- **Simplicity:** Fuel efficiency decreases the complexity and frequency of refueling operations and logistics planning, while reducing vulnerability to the "Fog of War".

Improved Warfighting Capability via Fuel Efficiency Increases

Fuel is the Second Largest Demand on the Battlefield

Next to Water, Fuel has the Most Tonnage on the Battlefield: 39% of the Demand

Largest Fuel Consumer is in Logistics Infrastructure Areas

65% of the Fuel Consumed in Theater is in the EAC and Corps Rear

Fuel Savings Have Dynamic Impacts on Infrastructure and Deployment Weights

A 30% Fuel Savings in a Theater Battlefield Would Result in 5.85% Manpower Savings in the Logistics Infrastructure and 8.28% of Deployment Weight

Improving Fuel Efficiency

Defense Science Board Findings, January 2001

- Although significant warfighting, logistics, and cost benefits occur when weapons systems are more fuel-efficient, these benefits are not valued or emphasized in the DOD requirements or acquisition processes.
- Basing fuel price on wholesale and excluding delivery costs prevents an end-to-end view of fuel utilization in decision-making, does not reflect true fuel costs, masks energy efficiency benefits, and distorts platform design choices.
- The DOD resource allocation and accounting processes (PPBS, DOD Comptroller) do not reward fuel efficiency or penalize inefficiency.
- Operational and logistics wargaming of fuel requirements is not cross-linked to the Service requirements development or acquisition program processes.
- High payoff, fuel-efficient technologies are available now to improve warfighting effectiveness in current weapon systems through retrofit and in new systems acquisition.

Reflect True Cost of Fuel to the Battlefield

Improving Fuel Efficiency

Defense Science Board Recommendations

- Base investment decisions on the true cost of delivered fuel and on warfighting and environmental benefits.
- Strengthen linkage between warfighting capability and fuel logistics requirements through wargaming and new analytical tools.
- Provide leadership that incentivizes fuel efficiency throughout the DOD.
- Specifically target fuel efficiency improvements through investments in Science and Technology and systems designs.
- Explicitly include fuel efficiency in requirements and acquisition processes.

National Automotive Center

Dual-Needs Focus

Accelerating the Infusion of Commercial Technology

Army Hybrid Electric (HE) and Fuel Cell (FC) Implementation Roadmap

Premise: HE and Fuel Cells are enabling technologies for Army Transformation

- Totally Involve Warfighting, PM and Materiel Developer Communities
- Fully Understand Requirements (Capture Voice of Customer)
 - Military
 - Commercial Industry
 - Government (Regulations & Standards)
- Know Technology Capability (Investments Made by Government and Industry)
- Identify & Address the Issues (Known Deficiencies)
- Demonstrate HE and FC Technologies
- Mature HE and FC Technologies
 - Bridge the Gap Between Capabilities and Requirements
 - Test Vehicle Solutions and Feedback Data
- Initiate Acquisition Development Programs

HE Benefits

Comparing Military and Commercial Priorities

<u>Military</u>

- Design Flexibility
- Reduced Signature (Stealth Potential)

Commercial

- Improved Fuel Economy (22-33%)
- Reduced Maintenance on Select Subsystems
- Mobile Power Generation
- Improved Performance
- Reduced Emissions

Improved Driveability

HE Issues

Comparing Military and Commercial Issues

Military

- Inadequate Testing
- No User Experience
 - Safety
 - Maintenance
- Unique Military Environment

- Technology Challenge
 - Energy Storage
 - Power Electronics
- Weight and Space Claim Penalties
- Cost (component)

Commercial

- Limited Testing
- Limited User Experience
- Emission Certification

HE Programs

HMMWV

HEMTT

COMBATT

RST-V

HIMARS

Bradley

FSCS

8 x 8

COMBATT Video

8X8 Video

FC Benefits

Comparing Military and Commercial Priorities

Military

Commercial

- Soldier Power
- Mobile Power Generation
- Reduced Thermal Signature (Stealth Potential)

- Quiet Auxiliary Power
- •Improved Fuel Economy (40 to 90%)
 - Design Flexibility
 (Drive By Wire, Stack Configuration, etc...)
 - •Improved Performance (Tractive Power)
 - Reduced Maintenance on Select Subsystems
 - Reduced Parts Count

- Near Zero Emissions (Regulations, Image)
- Improved Driveability

FC Issues

Comparing Military and Commercial Issues

Military

Commercial

- JP-8 Reforming
- No In-Vehicle Experience
- Harsh Military Environment

- _
- •Power Density

•Cost

- •Fuel Infrastructure/Supply
 - •CO Tolerance
 - Power Electronics
 - •Thermal Management
 - Limited Standardization
 - Safety
 - Training

- On-Board Hydrogen Storage
- Gasoline Reforming

FC Projects

Figure 11. Future concept for SOFC APU.

Solid Oxide Fuel Cell in a Heavy-Duty Vehicle

Liquid Fueled Fuel Cell APU

Phased Application of Fuel Cells in a Class 8 Trailer

Regenerable Fuel Cell

Top 10 Battlefield Fuel Users

- Truck Tractor: Line Haul
- UH60L
- Truck Tractor: MTV
- Truck Tractor: HET
- Tank M1A2
- CH47D
- Decontamination Apparatus
- HMMWV
- Water Heater
- AH64D

3 of the Top 4 Users are Trucks

Truck Requirements

0.045% of Trucks Will Be Hybrid Electric in 2007

HE Effects on Brigade Combat Team (BCT)

In the BCT (assuming all vehicles are hybrids):

- Increase the range by 180 miles on a single tank of fuel
- Use 4,000 less gallons of fuel over 100 miles
- Increase an average of 37 miles per day over a 5 day deployment w/o resupply
- Increase the efficiency of the Support Battalion by 89,000 ton-miles per day
- •Could replace some of the BCT's 123 generators that weigh 70 STONS and consume 19K cubic feet of space on deployment due to on-board electric power in the truck
- Expanding our analysis to demonstrate the real savings/cost avoidance in procurement offsets, spaces, and infrastructure

Future Tactical Truck Systems (FTTS) FTTS and Future Buys of Today's Truck Variants Must be Hybrid or All-Electric

Conclusion

Army Priorities

Win the War

Army Transformation

Resources to Do Both

Doctrine
Training
Leaders
Organizations
Materiel
Soldiers

Installations
Business Processes